<< degree 11 | overview | degree 13 >>
Transitive Groups of degree 12 | ||||||
G | Δ Name | |G| | |G| fact. | |Z(G)| | Properties of G | # fields |
---|---|---|---|---|---|---|
12T41 | 1/2[(1/4.23)2]F36(6) | 72 |
23 · 32
|
2 | solvable, semiabelian | 405 |
12T278 | 1/2[(L(6):2)2]2 | 14400 |
26 · 32 · 52
|
1 | not solvable, irreducible | 167 |
12T21 | 1/2[1/4.26]S(3) | 48 |
24 · 3
|
2 | solvable, semiabelian, even | 891 |
12T30 | 1/2[1/4.43]S(3) | 48 |
24 · 3
|
2 | solvable, semiabelian | 389 |
12T276 | 1/2[1/4.S(4)3]S(3) | 10368 |
27 · 34
|
1 | solvable, semiabelian | 367 |
12T151 | 1/2[1/4.cD(4)3]S(3) | 384 |
27 · 3
|
2 | solvable, semiabelian | 450 |
12T148 | 1/2[1/4.eD(4)3]S(3) | 384 |
27 · 3
|
2 | solvable, semiabelian | 1313 |
12T9 | 1/2[1/8.26]S(3)=S4(12e) | 24 |
23 · 3
|
1 | solvable, semiabelian, even | 507 |
12T108 | 1/2[25]D(6) | 192 |
26 · 3
|
1 | solvable, semiabelian, even | 936 |
12T105 | 1/2[26]6 | 192 |
26 · 3
|
2 | solvable, semiabelian | 724 |
12T145 | 1/2[26]D(6) | 384 |
27 · 3
|
2 | solvable, semiabelian | 751 |
12T107 | 1/2[26]D6 | 192 |
26 · 3
|
2 | solvable, semiabelian | 571 |
12T197 | 1/2[26]F18:2 | 1152 |
27 · 32
|
2 | solvable, semiabelian | 793 |
12T198 | 1/2[26]F36 | 1152 |
27 · 32
|
2 | solvable, semiabelian | 730 |
12T256 | 1/2[26]L(6):2 | 3840 |
28 · 3 · 5
|
2 | not solvable | 643 |
12T287 | 1/2[26]S(6) | 23040 |
29 · 32 · 5
|
2 | not solvable, irreducible | 823 |
12T192 | 1/2[26]S4(6c) | 768 |
28 · 3
|
2 | solvable, semiabelian | 836 |
12T190 | 1/2[26]S4(6d) | 768 |
28 · 3
|
2 | solvable, semiabelian | 1130 |
12T5 | 1/2[3:2]4 | 12 |
22 · 3
|
2 | solvable, semiabelian | 197 |
12T44 | 1/2[3:2]S(4) | 72 |
23 · 32
|
1 | solvable, semiabelian | 320 |
12T12 | 1/2[3:2]cD(4) | 24 |
23 · 3
|
2 | solvable, semiabelian | 390 |
12T15 | 1/2[3:2]dD(4) | 24 |
23 · 3
|
2 | solvable, semiabelian | 416 |
12T13 | 1/2[3:2]eD(4) | 24 |
23 · 3
|
2 | solvable, semiabelian | 419 |
12T38 | 1/2[32:2]cD(4) | 72 |
23 · 32
|
2 | solvable, semiabelian | 395 |
12T73 | 1/2[33:2]4 | 108 |
22 · 33
|
3 | solvable, semiabelian | 263 |
12T70 | 1/2[33:2]E(4) | 108 |
22 · 33
|
3 | solvable, semiabelian, even | 463 |
12T178 | 1/2[33:2]S(4) | 648 |
23 · 34
|
1 | solvable, semiabelian | 470 |
12T120 | 1/2[33:2]cD(4) | 216 |
23 · 33
|
1 | solvable, semiabelian | 652 |
12T121 | 1/2[33:2]dD(4) | 216 |
23 · 33
|
3 | solvable, semiabelian | 662 |
12T118 | 1/2[33:2]eD(4) | 216 |
23 · 33
|
1 | solvable, semiabelian | 509 |
12T233 | 1/2[34:2]S(4) | 1944 |
23 · 35
|
1 | solvable, semiabelian | 384 |
12T169 | 1/2[34:2]cD(4) | 648 |
23 · 34
|
1 | solvable, semiabelian | 454 |
12T172 | 1/2[34:22]E(4) | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 462 |
12T209 | 1/2[34:22]cD(4) | 1296 |
24 · 34
|
1 | solvable, semiabelian | 659 |
12T98 | 1/2[43]S(3) | 192 |
26 · 3
|
2 | solvable, semiabelian | 248 |
12T103 | 1/2[E(4)3]S(3) | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 1291 |
12T215 | 1/2[F362]2 | 1296 |
24 · 34
|
1 | solvable, semiabelian, even | 233 |
12T244 | 1/2[S(3)4]4 | 2592 |
25 · 34
|
1 | solvable, semiabelian, even | 386 |
12T246 | 1/2[S(3)4]E(4) | 2592 |
25 · 34
|
1 | solvable, semiabelian | 350 |
12T282 | 1/2[S(3)4]S(4) | 15552 |
26 · 35
|
1 | solvable, even | 296 |
12T263 | 1/2[S(3)4]cD(4) | 5184 |
26 · 34
|
1 | solvable, semiabelian | 450 |
12T262 | 1/2[S(3)4]dD(4) | 5184 |
26 · 34
|
1 | solvable, semiabelian | 499 |
12T266 | 1/2[S(3)4]eD(4) | 5184 |
26 · 34
|
1 | solvable, semiabelian, even | 551 |
12T291 | 1/2[S(4)3]S(3) | 41472 |
29 · 34
|
1 | solvable, semiabelian | 596 |
12T298 | 1/2[S(6)2]2 | 518400 |
28 · 34 · 52
|
1 | not solvable, irreducible | 265 |
12T160 | 1/2[S4(6c)2]2 | 576 |
26 · 32
|
1 | solvable, semiabelian | 329 |
12T52 | 1/2c[1/16.D(4)3]S(3) | 96 |
25 · 3
|
2 | solvable, semiabelian | 738 |
12T225 | 1/2c[D(4)3]S(3) | 1536 |
29 · 3
|
2 | solvable, semiabelian | 1212 |
12T50 | 1/2e[1/16.D(4)3]S(3) | 96 |
25 · 3
|
2 | solvable, semiabelian | 749 |
12T223 | 1/2e[D(4)3]S(3) | 1536 |
29 · 3
|
2 | solvable, semiabelian | 1499 |
12T132 | 1/3[34]A(4) | 324 |
22 · 34
|
1 | solvable, semiabelian, even | 273 |
12T228 | 1/3[A(4)3]3 | 1728 |
26 · 33
|
1 | solvable, semiabelian, even | 241 |
12T25 | 2A4(6)[x]2=[1/4.26]3 | 48 |
24 · 3
|
4 | solvable, semiabelian, even | 787 |
12T48 | 2S4(6)[x]2=[1/4.26]S(3) | 96 |
25 · 3
|
4 | solvable, semiabelian, even | 1765 |
12T300 | A(12) | 239500800 |
29 · 35 · 52 · 7 · 11
|
1 | not solvable, primitive, simple, irreducible, even | 125 |
12T20 | A(4)[x]C(3) | 36 |
22 · 32
|
3 | solvable, semiabelian, even | 195 |
12T43 | A(4)[x]S(3) | 72 |
23 · 32
|
1 | solvable, semiabelian, even | 460 |
12T180 | A(6)[x]2 | 720 |
24 · 32 · 5
|
2 | not solvable, even | 359 |
12T4 | A4(12) | 12 |
22 · 3
|
1 | solvable, semiabelian, even | 209 |
12T6 | A4(12)x2 | 24 |
23 · 3
|
2 | solvable, semiabelian, even | 516 |
12T26 | A4(12)x22 | 48 |
24 · 3
|
4 | solvable, semiabelian, even | 474 |
12T7 | A4(6)[x]2=[1/8.26]3 | 24 |
23 · 3
|
2 | solvable, semiabelian, even | 470 |
12T33 | A5(12) | 60 |
22 · 3 · 5
|
1 | not solvable, simple, irreducible, even | 116 |
12T1 | C(4)[x]C(3) | 12 |
22 · 3
|
12 | cyclic, semiabelian | 197 |
12T14 | D(4)[x]C(3) | 24 |
23 · 3
|
6 | nilpotent, semiabelian | 489 |
12T28 | D(4)[x]S(3) | 48 |
24 · 3
|
2 | solvable, semiabelian | 1109 |
12T3 | D6(6)[x]2=1/2[3:2]E(4) | 12 |
22 · 3
|
2 | solvable, semiabelian, even | 623 |
12T2 | E(4)[x]C(3)=6x2 | 12 |
22 · 3
|
12 | abelian, semiabelian, even | 226 |
12T40 | F36(6)[x]2 | 72 |
23 · 32
|
2 | solvable, semiabelian, even | 379 |
12T36 | F36:2(12d) | 72 |
23 · 32
|
1 | solvable, semiabelian | 619 |
12T34 | F36:2(12e) | 72 |
23 · 32
|
1 | solvable, semiabelian, even | 608 |
12T179 | L(2,11) | 660 |
22 · 3 · 5 · 11
|
1 | not solvable, primitive, simple, irreducible, even | 36 |
12T123 | L(6):2[x]2 | 240 |
24 · 3 · 5
|
2 | not solvable, even | 705 |
12T75 | L(6)[x]2 | 120 |
23 · 3 · 5
|
2 | not solvable, even | 341 |
12T295 | M(12) | 95040 |
26 · 33 · 5 · 11
|
1 | not solvable, primitive, simple, irreducible, even | 80 |
12T181 | M10(12)=[A6[1/360]{M10}A6]22 | 720 |
24 · 32 · 5
|
1 | not solvable, irreducible, even | 22 |
12T220 | M10.2(12)=A6.E4(12)=[S6[1/720]{M10}S6]2 | 1440 |
25 · 32 · 5
|
1 | not solvable, irreducible, even | 198 |
12T272 | M11(12) | 7920 |
24 · 32 · 5 · 11
|
1 | not solvable, primitive, simple, irreducible, even | 42 |
12T218 | PGL(2,11) | 1320 |
23 · 3 · 5 · 11
|
1 | not solvable, primitive, irreducible | 124 |
12T182 | PGL(2,9)(12)=[A6[1/360]{M10}A6]2 | 720 |
24 · 32 · 5
|
1 | not solvable, irreducible, even | 91 |
12T301 | S(12) | 479001600 |
210 · 35 · 52 · 7 · 11
|
1 | not solvable, primitive, irreducible | 417 |
12T11 | S(3)[x]C(4) | 24 |
23 · 3
|
4 | solvable, semiabelian | 394 |
12T10 | S(3)[x]E(4) | 24 |
23 · 3
|
4 | solvable, semiabelian, even | 798 |
12T45 | S(4)[x]C(3) | 72 |
23 · 32
|
3 | solvable, semiabelian | 392 |
12T83 | S(4)[x]S(3) | 144 |
24 · 32
|
1 | solvable, semiabelian | 587 |
12T219 | S(6)[x]2 | 1440 |
25 · 32 · 5
|
2 | not solvable, even | 980 |
12T8 | S4(12d) | 24 |
23 · 3
|
1 | solvable, semiabelian | 529 |
12T22 | S4(12d)x2 | 48 |
24 · 3
|
2 | solvable, semiabelian | 809 |
12T24 | S4(6c)[x]2 | 48 |
24 · 3
|
2 | solvable, semiabelian, even | 1250 |
12T23 | S4(6d)[x]2=[1/8.26]S(3) | 48 |
24 · 3
|
2 | solvable, semiabelian, even | 1253 |
12T74 | S5(12) | 120 |
23 · 3 · 5
|
1 | not solvable, irreducible, even | 276 |
12T183 | S6(12) | 720 |
24 · 32 · 5
|
1 | not solvable, irreducible, even | 397 |
12T99 | [(1/2.22)3]2A4(6)2 | 192 |
26 · 3
|
2 | solvable, semiabelian | 496 |
12T91 | [(1/2.22)3]2A4(6)4{n2} | 192 |
26 · 3
|
2 | solvable, even | 419 |
12T89 | [(1/2.22)3]2A4(6)4{n4} | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 508 |
12T104 | [(1/2.22)3]2A4(6)8 | 192 |
26 · 3
|
2 | solvable | 403 |
12T152 | [(1/2.22)3]2S4(6)2{S4(6c)} | 384 |
27 · 3
|
2 | solvable, semiabelian | 798 |
12T153 | [(1/2.22)3]2S4(6)2{S4(6d)} | 384 |
27 · 3
|
2 | solvable, semiabelian | 845 |
12T138 | [(1/2.22)3]2S4(6)4 | 384 |
27 · 3
|
2 | solvable, semiabelian, even | 967 |
12T147 | [(1/2.22)3]2S4(6)8 | 384 |
27 · 3
|
2 | solvable, semiabelian | 598 |
12T57 | [(1/2.22)3]A4(6)4 | 96 |
25 · 3
|
2 | solvable, irreducible, even | 256 |
12T54 | [(1/2.22)3]D(6)4 | 96 |
25 · 3
|
2 | solvable, semiabelian | 446 |
12T102 | [(1/2.22)3]S4(6c)2 | 192 |
26 · 3
|
2 | solvable, semiabelian | 642 |
12T97 | [(1/2.22)3]S4(6c)4 | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 395 |
12T100 | [(1/2.22)3]S4(6d)2 | 192 |
26 · 3
|
2 | solvable, semiabelian | 1202 |
12T96 | [(1/2.22)3]S4(6d)8 | 192 |
26 · 3
|
2 | solvable, semiabelian | 412 |
12T46 | [(1/3.33):2]44 | 72 |
23 · 32
|
1 | solvable, semiabelian, even | 153 |
12T122 | [(1/3.33):2]A(4)4 | 216 |
23 · 33
|
1 | solvable, even | 133 |
12T84 | [(1/3.33):2]D(4)4 | 144 |
24 · 32
|
1 | solvable, semiabelian, even | 296 |
12T47 | [(1/3.33):2]E(4)4 | 72 |
23 · 32
|
1 | solvable, semiabelian, even | 178 |
12T157 | [(1/3.33):2]S(4)4 | 432 |
24 · 33
|
1 | solvable, even | 226 |
12T82 | [(1/4.23)2]F36(6) | 144 |
24 · 32
|
2 | solvable, semiabelian | 603 |
12T288 | [(L(6):2)2]2=L(6):2wr2 | 28800 |
27 · 32 · 52
|
1 | not solvable, irreducible | 413 |
12T51 | [1/16.D(4)3]3 | 96 |
25 · 3
|
2 | solvable, semiabelian | 745 |
12T86 | [1/16.D(4)3]S(3) | 192 |
26 · 3
|
2 | solvable, semiabelian | 1553 |
12T279 | [1/2.(L(6):2)2]2 | 14400 |
26 · 32 · 52
|
1 | not solvable, irreducible, even | 380 |
12T56 | [1/2.26]3 | 96 |
25 · 3
|
2 | solvable, semiabelian, even | 1435 |
12T101 | [1/2.26]S(3) | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 1534 |
12T29 | [1/2.42]3 | 48 |
24 · 3
|
4 | solvable, semiabelian | 300 |
12T53 | [1/2.42]S(3) | 96 |
25 · 3
|
4 | solvable, semiabelian | 619 |
12T55 | [1/2.43]3 | 96 |
25 · 3
|
2 | solvable, semiabelian, even | 432 |
12T95 | [1/2.43]S(3) | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 531 |
12T214 | [1/2.F362]2 | 1296 |
24 · 34
|
1 | solvable, semiabelian, even | 380 |
12T284 | [1/2.S(4)3]3 | 20736 |
28 · 34
|
1 | solvable, semiabelian, even | 518 |
12T290 | [1/2.S(4)3]S(3) | 41472 |
29 · 34
|
1 | solvable, semiabelian, even | 711 |
12T297 | [1/2.S(6)2]2 | 518400 |
28 · 34 · 52
|
1 | not solvable, irreducible, even | 716 |
12T161 | [1/2.S4(6c)2]2 | 576 |
26 · 32
|
1 | solvable, semiabelian, even | 510 |
12T189 | [1/2.cD(4)3]3 | 768 |
28 · 3
|
2 | solvable, semiabelian | 1139 |
12T221 | [1/2.cD(4)3]S(3) | 1536 |
29 · 3
|
2 | solvable, semiabelian | 1259 |
12T60 | [1/2[1/2.22]3]2A4(6)4 | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 312 |
12T113 | [1/2[1/2.22]3]2S4(6)4 | 192 |
26 · 3
|
1 | solvable, semiabelian, even | 615 |
12T112 | [1/2[1/2.22]3]2S4(6)8 | 192 |
26 · 3
|
1 | solvable, semiabelian, even | 521 |
12T68 | [1/2[1/2.22]3]S4(6c) | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 586 |
12T65 | [1/2[1/2.22]3]S4(6c)4 | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 200 |
12T66 | [1/2[1/2.22]3]S4(6d)2 | 96 |
25 · 3
|
1 | solvable, semiabelian | 642 |
12T64 | [1/2[1/2.22]3]S4(6d)8a | 96 |
25 · 3
|
1 | solvable, semiabelian | 223 |
12T63 | [1/2[1/2.22]3]S4(6d)8b | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 213 |
12T229 | [1/3.A(4)3]3 | 1728 |
26 · 33
|
1 | solvable, semiabelian, even | 342 |
12T252 | [1/3.A(4)3]S(3) | 3456 |
27 · 33
|
1 | solvable, semiabelian, even | 738 |
12T251 | [1/3.A(4)3]S(3)2 | 3456 |
27 · 33
|
1 | solvable, semiabelian | 565 |
12T254 | [1/3.A(4)3]S(3)6 | 3456 |
27 · 33
|
1 | solvable, semiabelian | 361 |
12T273 | [1/4.S(4)3]3 | 10368 |
27 · 34
|
1 | solvable, semiabelian | 408 |
12T283 | [1/4.S(4)3]S(3) | 20736 |
28 · 34
|
1 | solvable, semiabelian | 712 |
12T141 | [1/4.cD(4)3]3 | 384 |
27 · 3
|
2 | solvable, semiabelian | 742 |
12T185 | [1/4.cD(4)3]S(3) | 768 |
28 · 3
|
2 | solvable, semiabelian | 1321 |
12T142 | [1/4.eD(4)3]3 | 384 |
27 · 3
|
2 | solvable, semiabelian | 1574 |
12T186 | [1/4.eD(4)3]S(3) | 768 |
28 · 3
|
2 | solvable, semiabelian | 2039 |
12T129 | [1/4E(4)3:3:2]3 | 288 |
25 · 32
|
1 | solvable, semiabelian | 412 |
12T165 | [1/4E(4)3:3:2]3 | 576 |
26 · 32
|
1 | solvable, semiabelian | 644 |
12T85 | [1/4E(4)3:3]3 | 144 |
24 · 32
|
1 | solvable, semiabelian, even | 242 |
12T128 | [1/4E(4)3:3]S(3) | 288 |
25 · 32
|
1 | solvable, semiabelian, even | 402 |
12T127 | [1/4E(4)3:3]S(3)2 | 288 |
25 · 32
|
1 | solvable, semiabelian | 415 |
12T164 | [1/9.A(4)3]3 | 576 |
26 · 32
|
1 | solvable, semiabelian, even | 524 |
12T166 | [1/9.A(4)3]33 | 576 |
26 · 32
|
1 | solvable, semiabelian, even | 362 |
12T206 | [1/9.A(4)3]S(3) | 1152 |
27 · 32
|
1 | solvable, semiabelian, even | 879 |
12T204 | [1/9.A(4)3]S(3)2 | 1152 |
27 · 32
|
1 | solvable, semiabelian | 580 |
12T207 | [1/9.A(4)3]S(3)6 | 1152 |
27 · 32
|
1 | solvable, semiabelian | 498 |
12T208 | [2A42]2=2A4wr2=2wrF18(6) | 1152 |
27 · 32
|
2 | solvable, semiabelian | 1269 |
12T260 | [2S42]2=2S4wr2 | 4608 |
29 · 32
|
2 | solvable, semiabelian | 2767 |
12T49 | [2]2S4(6)2 | 96 |
25 · 3
|
2 | solvable, semiabelian | 754 |
12T80 | [2]F36:22{32:4} | 144 |
24 · 32
|
2 | solvable, semiabelian | 651 |
12T78 | [2]F36:22{S32} | 144 |
24 · 32
|
2 | solvable, semiabelian | 996 |
12T124 | [2]L(6):212 | 240 |
24 · 3 · 5
|
2 | not solvable, irreducible | 311 |
12T76 | [2]L(6)6 | 120 |
23 · 3 · 5
|
2 | not solvable, even | 377 |
12T27 | [2]S4(6)2 | 48 |
24 · 3
|
2 | solvable, semiabelian | 360 |
12T59 | [23]A4(6) | 96 |
25 · 3
|
1 | solvable, semiabelian | 527 |
12T61 | [23]A4(6)4 | 96 |
25 · 3
|
1 | solvable, semiabelian | 302 |
12T111 | [23]S4(6)2 | 192 |
26 · 3
|
1 | solvable, semiabelian | 876 |
12T114 | [23]S4(6)4 | 192 |
26 · 3
|
1 | solvable, semiabelian | 619 |
12T115 | [23]S4(6)8 | 192 |
26 · 3
|
1 | solvable, semiabelian | 602 |
12T110 | [23]S4(6d) | 192 |
26 · 3
|
1 | solvable, semiabelian | 826 |
12T143 | [24]2A4(6)4 | 384 |
27 · 3
|
2 | solvable | 689 |
12T58 | [24]6 | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 499 |
12T88 | [24]A4(6) | 192 |
26 · 3
|
2 | solvable, semiabelian | 945 |
12T93 | [24]A4(6)4{n2} | 192 |
26 · 3
|
2 | solvable | 430 |
12T92 | [24]A4(6)4{n4} | 192 |
26 · 3
|
2 | solvable, semiabelian | 501 |
12T109 | [24]D(6) | 192 |
26 · 3
|
1 | solvable, semiabelian, even | 882 |
12T69 | [24]D6(6) | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 463 |
12T163 | [24]F18(6):2 | 576 |
26 · 32
|
1 | solvable, semiabelian, even | 526 |
12T162 | [24]F36(6) | 576 |
26 · 32
|
1 | solvable, semiabelian, even | 401 |
12T202 | [24]F36:22 | 1152 |
27 · 32
|
1 | solvable, semiabelian, even | 1262 |
12T201 | [24]F36:24 | 1152 |
27 · 32
|
1 | solvable, semiabelian | 1099 |
12T146 | [24]S4(6c) | 384 |
27 · 3
|
2 | solvable, semiabelian | 855 |
12T149 | [24]S4(6c)4 | 384 |
27 · 3
|
2 | solvable, semiabelian | 732 |
12T137 | [24]S4(6d) | 384 |
27 · 3
|
2 | solvable, semiabelian | 1438 |
12T140 | [24]S4(6d)4 | 384 |
27 · 3
|
2 | solvable, semiabelian | 1005 |
12T187 | [25]2A4(6) | 768 |
28 · 3
|
2 | solvable, semiabelian, even | 1690 |
12T226 | [25]2S4(6) | 1536 |
29 · 3
|
2 | solvable, semiabelian, even | 1879 |
12T87 | [25]6 | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 929 |
12T277 | [25]A(6) | 11520 |
28 · 32 · 5
|
2 | not solvable, even | 529 |
12T144 | [25]A4(6) | 384 |
27 · 3
|
2 | solvable, semiabelian, even | 994 |
12T136 | [25]D(6) | 384 |
27 · 3
|
2 | solvable, semiabelian, even | 1553 |
12T155 | [25]D(6)2i | 384 |
27 · 3
|
2 | solvable, semiabelian | 1150 |
12T154 | [25]D(6)2t | 384 |
27 · 3
|
2 | solvable, semiabelian | 776 |
12T106 | [25]D6(6) | 192 |
26 · 3
|
2 | solvable, semiabelian, even | 830 |
12T158 | [25]F18(6) | 576 |
26 · 32
|
2 | solvable, semiabelian, even | 687 |
12T195 | [25]F18(6):2 | 1152 |
27 · 32
|
2 | solvable, semiabelian, even | 1085 |
12T159 | [25]F18(6)2 | 576 |
26 · 32
|
2 | solvable, semiabelian | 563 |
12T196 | [25]F18:22 | 1152 |
27 · 32
|
2 | solvable, semiabelian | 452 |
12T199 | [25]F36(6) | 1152 |
27 · 32
|
2 | solvable, semiabelian, even | 880 |
12T236 | [25]F36(6):2 | 2304 |
28 · 32
|
2 | solvable, semiabelian, even | 1837 |
12T238 | [25]F36:22{32:4} | 2304 |
28 · 32
|
2 | solvable, semiabelian | 1712 |
12T237 | [25]F36:22{S32,i} | 2304 |
28 · 32
|
2 | solvable, semiabelian | 1733 |
12T235 | [25]F36:22{S32,t} | 2304 |
28 · 32
|
2 | solvable, semiabelian | 1865 |
12T230 | [25]L(6) | 1920 |
27 · 3 · 5
|
2 | not solvable, even | 704 |
12T257 | [25]L(6):2 | 3840 |
28 · 3 · 5
|
2 | not solvable, even | 672 |
12T285 | [25]S(6) | 23040 |
29 · 32 · 5
|
2 | not solvable, even | 1566 |
12T191 | [25]S4(6c) | 768 |
28 · 3
|
2 | solvable, semiabelian, even | 995 |
12T184 | [25]S4(6d) | 768 |
28 · 3
|
2 | solvable, semiabelian, even | 1189 |
12T134 | [26]6=2wr6 | 384 |
27 · 3
|
2 | solvable, semiabelian | 1623 |
12T286 | [26]A(6)=2wrA(6) | 23040 |
29 · 32 · 5
|
2 | not solvable | 1061 |
12T188 | [26]A4=2wrA4(6) | 768 |
28 · 3
|
2 | solvable, semiabelian | 1810 |
12T193 | [26]D(6)=2wrD(6) | 768 |
28 · 3
|
2 | solvable, semiabelian | 2220 |
12T135 | [26]D6=2wrD6(6) | 384 |
27 · 3
|
2 | solvable, semiabelian | 1275 |
12T240 | [26]F18:2=2wrF18(6):2 | 2304 |
28 · 32
|
2 | solvable, semiabelian | 1807 |
12T241 | [26]F36=2wrF36(6) | 2304 |
28 · 32
|
2 | solvable, semiabelian | 1642 |
12T270 | [26]L(6):2=2wrL(6):2 | 7680 |
29 · 3 · 5
|
2 | not solvable | 1351 |
12T255 | [26]L(6)=2wrL(6) | 3840 |
28 · 3 · 5
|
2 | not solvable | 1307 |
12T293 | [26]S(6)=2wrS(6) | 46080 |
210 · 32 · 5
|
2 | not solvable | 2481 |
12T224 | [26]S4(6c)=2wrS4(6c) | 1536 |
29 · 3
|
2 | solvable, semiabelian | 1586 |
12T227 | [26]S4(6d)=2wrS4(6d) | 1536 |
29 · 3
|
2 | solvable, semiabelian | 2081 |
12T39 | [32:2]4 | 72 |
23 · 32
|
2 | solvable, semiabelian | 335 |
12T81 | [32:2]D(4) | 144 |
24 · 32
|
2 | solvable, semiabelian | 739 |
12T37 | [32:2]E(4) | 72 |
23 · 32
|
2 | solvable, semiabelian, even | 652 |
12T17 | [32]4 | 36 |
22 · 32
|
1 | solvable, semiabelian | 203 |
12T19 | [32]4 | 36 |
22 · 32
|
6 | solvable, semiabelian | 270 |
12T42 | [32]D(4)=6wr2 | 72 |
23 · 32
|
6 | solvable, semiabelian | 468 |
12T16 | [32]E(4) | 36 |
22 · 32
|
1 | solvable, semiabelian, even | 360 |
12T18 | [32]E(4) | 36 |
22 · 32
|
6 | solvable, semiabelian, even | 359 |
12T119 | [33:2]4 | 216 |
23 · 33
|
1 | solvable, semiabelian | 409 |
12T176 | [33:2]A(4) | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 560 |
12T156 | [33:2]D(4) | 432 |
24 · 33
|
1 | solvable, semiabelian | 1040 |
12T117 | [33:2]E(4) | 216 |
23 · 33
|
1 | solvable, semiabelian, even | 534 |
12T213 | [33:2]S(4) | 1296 |
24 · 34
|
1 | solvable, semiabelian | 745 |
12T72 | [33]4 | 108 |
22 · 33
|
1 | solvable, semiabelian | 285 |
12T133 | [33]A(4) | 324 |
22 · 34
|
1 | solvable, semiabelian, even | 272 |
12T116 | [33]D(4) | 216 |
23 · 33
|
1 | solvable, semiabelian | 626 |
12T71 | [33]E(4) | 108 |
22 · 33
|
1 | solvable, semiabelian, even | 304 |
12T175 | [33]S(4) | 648 |
23 · 34
|
1 | solvable, semiabelian | 404 |
12T177 | [33]S(4)6 | 648 |
23 · 34
|
1 | solvable, semiabelian | 518 |
12T170 | [34:2]4 | 648 |
23 · 34
|
1 | solvable, semiabelian | 429 |
12T173 | [34:2]44 | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 208 |
12T234 | [34:2]A(4) | 1944 |
23 · 35
|
1 | solvable, semiabelian, even | 420 |
12T232 | [34:2]A(4)4 | 1944 |
23 · 35
|
1 | solvable, even | 228 |
12T217 | [34:2]D(4) | 1296 |
24 · 34
|
1 | solvable, semiabelian | 890 |
12T216 | [34:2]D(4)4 | 1296 |
24 · 34
|
1 | solvable, semiabelian, even | 434 |
12T212 | [34:2]D(4)8 | 1296 |
24 · 34
|
1 | solvable, semiabelian, even | 282 |
12T168 | [34:2]E(4) | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 390 |
12T171 | [34:2]E(4)2 | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 300 |
12T174 | [34:2]E(4)4 | 648 |
23 · 34
|
1 | solvable, semiabelian, even | 188 |
12T258 | [34:2]S(4) | 3888 |
24 · 35
|
1 | solvable, semiabelian | 653 |
12T259 | [34:2]S(4)8 | 3888 |
24 · 35
|
1 | solvable, even | 253 |
12T211 | [34:22]4 | 1296 |
24 · 34
|
1 | solvable, semiabelian | 497 |
12T248 | [34:22]D(4) | 2592 |
25 · 34
|
1 | solvable, semiabelian | 809 |
12T247 | [34:22]D(4)2 | 2592 |
25 · 34
|
1 | solvable, semiabelian | 461 |
12T243 | [34:22]D(4)4 | 2592 |
25 · 34
|
1 | solvable, semiabelian, even | 403 |
12T210 | [34:22]E(4) | 1296 |
24 · 34
|
1 | solvable, semiabelian, even | 732 |
12T245 | [34:23]4 | 2592 |
25 · 34
|
1 | solvable, semiabelian | 358 |
12T271 | [34:23]A(4) | 7776 |
25 · 35
|
1 | solvable, semiabelian, even | 281 |
12T267 | [34:23]D(4) | 5184 |
26 · 34
|
1 | solvable, semiabelian | 747 |
12T242 | [34:23]E(4) | 2592 |
25 · 34
|
1 | solvable, semiabelian, even | 406 |
12T281 | [34:23]S(4) | 15552 |
26 · 35
|
1 | solvable, semiabelian | 373 |
12T131 | [34]4=3wr4 | 324 |
22 · 34
|
3 | solvable, semiabelian | 238 |
12T194 | [34]A(4)=3wrA(4) | 972 |
22 · 35
|
3 | solvable, semiabelian, even | 229 |
12T167 | [34]D(4)=3wrD(4) | 648 |
23 · 34
|
3 | solvable, semiabelian | 554 |
12T130 | [34]E(4)=3wrE(4) | 324 |
22 · 34
|
3 | solvable, semiabelian, even | 276 |
12T231 | [34]S(4)=3wrS(4) | 1944 |
23 · 35
|
3 | solvable, semiabelian | 332 |
12T31 | [42]3 | 48 |
24 · 3
|
1 | solvable, semiabelian, even | 133 |
12T62 | [42]S(3) | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 263 |
12T94 | [43]3=4wr3 | 192 |
26 · 3
|
4 | solvable, semiabelian | 369 |
12T150 | [43]S(3)=4wrS(3) | 384 |
27 · 3
|
4 | solvable, semiabelian | 466 |
12T265 | [A(4)3]3=A(4)wr3 | 5184 |
26 · 34
|
1 | solvable, semiabelian, even | 329 |
12T275 | [A(4)3]S(3)=A(4)wrS(3) | 10368 |
27 · 34
|
1 | solvable, semiabelian, even | 514 |
12T296 | [A(6)2]2=A(6)wr2 | 259200 |
27 · 34 · 52
|
1 | not solvable, irreducible, even | 454 |
12T126 | [A42]2=A4wr2 | 288 |
25 · 32
|
1 | solvable, semiabelian, even | 410 |
12T222 | [D(4)4]3=D(4)wr3 | 1536 |
29 · 3
|
2 | solvable, semiabelian | 2634 |
12T250 | [D(4)4]S(3)=D(4)wrS(3) | 3072 |
210 · 3
|
2 | solvable, semiabelian | 3171 |
12T35 | [D62]2=D6wr2 | 72 |
23 · 32
|
1 | solvable, semiabelian | 607 |
12T32 | [E(4)2]3 | 48 |
24 · 3
|
1 | solvable, semiabelian, even | 388 |
12T67 | [E(4)2]S(3) | 96 |
25 · 3
|
1 | solvable, semiabelian, even | 409 |
12T205 | [E(4)3:3:2]3 | 1152 |
27 · 32
|
1 | solvable, semiabelian | 590 |
12T239 | [E(4)3:3:2]3 | 2304 |
28 · 32
|
1 | solvable, semiabelian | 1003 |
12T253 | [E(4)3:32:2]3 | 3456 |
27 · 33
|
1 | solvable, semiabelian | 610 |
12T268 | [E(4)3:32:2]S(3) | 6912 |
28 · 33
|
1 | solvable, semiabelian | 974 |
12T90 | [E(4)3]3=E(4)wr3 | 192 |
26 · 3
|
4 | solvable, semiabelian, even | 1128 |
12T139 | [E(4)3]S(3)=E(4)wrS(3) | 384 |
27 · 3
|
4 | solvable, semiabelian, even | 1217 |
12T249 | [F362]2=F36wr2 | 2592 |
25 · 34
|
1 | solvable, semiabelian, even | 319 |
12T269 | [L(6)2]2=L(6)wr2 | 7200 |
25 · 32 · 52
|
1 | not solvable, irreducible, even | 314 |
12T79 | [S(3)2]4 | 144 |
24 · 32
|
2 | solvable, semiabelian | 595 |
12T125 | [S(3)2]D(4)=D(6)wr2 | 288 |
25 · 32
|
2 | solvable, semiabelian | 1456 |
12T77 | [S(3)2]E(4) | 144 |
24 · 32
|
2 | solvable, semiabelian, even | 1034 |
12T264 | [S(3)4]4=S(3)wr4 | 5184 |
26 · 34
|
1 | solvable, semiabelian | 637 |
12T280 | [S(3)4]A(4)=S(3)wrA(4) | 15552 |
26 · 35
|
1 | solvable, semiabelian | 424 |
12T274 | [S(3)4]D(4)=S(3)wrD(4) | 10368 |
27 · 34
|
1 | solvable, semiabelian | 1081 |
12T261 | [S(3)4]E(4)=S(3)wrE(4) | 5184 |
26 · 34
|
1 | solvable, semiabelian | 459 |
12T289 | [S(3)4]S(4)=S(3)wrS(4) | 31104 |
27 · 35
|
1 | solvable, semiabelian | 849 |
12T292 | [S(4)3]3=S(4)wr3 | 41472 |
29 · 34
|
1 | solvable, semiabelian | 1252 |
12T294 | [S(4)3]S(3)=S(4)wrS(3) | 82944 |
210 · 34
|
1 | solvable, semiabelian | 1307 |
12T299 | [S(6)2]2=S(6)wr2 | 1036800 |
29 · 34 · 52
|
1 | not solvable, irreducible | 1243 |
12T200 | [S4(6c)2]2=S4(6c)wr2 | 1152 |
27 · 32
|
1 | solvable, semiabelian | 733 |
12T203 | [S4(6d)2]2=S4(6d)wr2 | 1152 |
27 · 32
|
1 | solvable, semiabelian, even | 859 |
9 | 5,22 ms